# To Predict > To Design > To Perform

# ME, ECE, IE Capstone Design Programs

# **Project 35: Sump Debris Removal** Kevin Callihan, Austin Fletcher, Colin Mansfield, Holden Marceaux, Austin Percle

### Objective

Design and build a scalable, automated sump debris removal system.

### Background

- Debris is currently caught in the sump by a wire mesh screen.
- Sump pump is used to move collected water to a basin in a water treatment plant.
- The current screen cleaning procedure exposes the pump to debris.

## **Measurable Engineering Specifications**

| Physical Size            | All dimensions of the model are scaled to %35 of the existing sump.                                                                                    |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flow Rate                | Maximum flow rate needs to be 105 GPM.                                                                                                                 |
| Volume of<br>Debris      | Maximum volume of loose debris is to be 4.2 gallons.                                                                                                   |
| Minimum<br>Particle Size | Smallest removable particle will be <sup>1</sup> / <sub>8</sub> "<br>diameter ear plugs. Allowed to miss an<br>average of 2 pieces per cleaning cycle. |

## Analysis



## Safety

- Machine guards for rotating machinery.
- Safety stickers will direct users to keep hands off during operation.
- Electrical components will be protected by GFCI receptacles.



## Model Compone

**Nozzles and** Brushes Sensor

**Test Apparatus** 

Frame

**Overall Systen** 

## **Sponsors: Thomas Sparks, Jennifer Farque**



Prototype

|     | Corresponding Test                                                                                     |        |  |
|-----|--------------------------------------------------------------------------------------------------------|--------|--|
| ent |                                                                                                        |        |  |
|     | Test ability of brush and nozzles to remove debris lodged in belt, and to cover full area of the belt. | L      |  |
|     | Determine accuracy of sensors from 6" up to 4'.                                                        | F      |  |
| S   | System's ability to create scaled flow rate similar to the real system.                                | Γ      |  |
|     | Dye penetrant tests on welds, Deflection test on certain highly loaded members.                        | C<br>C |  |
| n   | Run entire system and introduce debris.                                                                | 4      |  |





## Results

- Lodged Debris: Pass Coverage: Pass Percent Error = %0.75 Max Flow Rate: Pass Dye Test: Pass
- Deflection Test: Pass
- Average Number of Escaped Pieces = 1.1

## Subsystem Key

- **Overall System**
- 2 Debris Clearing System: brushes and nozzles
- 3 Debris Removal System: frame, belt, and drivetrain
- Control Panel: sensor relays, circuit boards, electric 4 power source
- Testing Apparatus: top view of channel shown 5

| Part            | Manufacturing                                                          | Mat                 |
|-----------------|------------------------------------------------------------------------|---------------------|
| Frame           | Welded<br>construction with<br>bolted supports                         | 6061-Té<br>Aluminu  |
| Test Apparatus  | Fastened with<br>screws, treated for<br>water resistance<br>and sealed | Plywood<br>2x4      |
| Belt            | Assembled and properly tensioned                                       | Polypro             |
| Brush           | Brushes glued and secured to shaft                                     | Polypro<br>Aluminu  |
| Nozzle Manifold | Headers<br>assembled, drilled<br>and tapped for<br>nozzles             | PVC, Bra<br>nozzles |



## **Advisers: Dr. Ram Devireddy**