ME, ECE, IE Capstone Design Programs

Team #15: Arc Welding 3D Printer Preston Cothren [ME], Zachary Farque [ME], Jonathan Hoffmann [ME], Jonathan Hoffstadt [ME], Jared Rivet [ME]

Objective Statement

To design and manufacture a 3D printer that utilizes arc welding technology to create metal objects from computer aided design software. The printer shall be capable of producing parts with features such as overhangs, inclines, and cavities within a 3 ft x 2 ft x 2 ft printing envelope.

Engineering Specifications

Quantitative Constraint	Target	Achieved
Deposition Rate	4.0 lbm/hr	4.7 lbm/hr
Material Properties	85.0% of parent material	96.1% of gross tensile strengt 90.0% of local tensile strengt
Print Resolution	Width = 0.375 in Height = 0.25 in	Width = 0.204 in Height = 0.094 in
Print Repeatability	± 10% of resolution	9.9% of resolution

Safety Considerations

- Risk assessment performed in accordance with ANSI/RIA R15.06-2012
- High voltage equipment signs and awareness
- Ventilation of welding fumes in accordance with IMC Table 4.4
- Emergency stops for operator safety

• Safety enclosure (seen below) designed and in accordance with ISO/TS 15066 for robot containment and arc flash mitigation

Concept

Selection

Oct 31 – Nov 14

Assembly Number	Part Name	Assembly Number	Part Name	Assembly Number	Pa

Embodiment

NUITIDEI				NUIIDEI	
1	Gantry	4	Torch Holder	7	Shield Ta
2	Linear Drive Assembly	5	Base Plate Holder	8	Car
3	UR-5 Six Axis Manipulator	6	Miller Continuum 350	9	Ca Manag

Key Features

- Xiris welding camera
- Weld data acquisition Remote operation

Manufacturing

Jan 31 – Apr 17

- Live video stream
 - Expenses \$62,395.81

Cost
\$3,306.02
\$12,490.77
\$1,070.00
\$2,300.00
\$1,303.57
\$31,500.00
\$10,075.45
\$350.00

Purchasing

Nov 26 – Apr 10

Engineering Analysis Nov 3 – Nov 26

College of Engineering Department of **Mechanical & Industrial Engineering**

art Name ding Gas

Material Testing

Conclusion

This printer can produce near net shape low carbon steel parts for use in rapid prototyping or as active service parts after minimal machining. These parts are seamless layer based metal structures which can exhibit complex features such as extrusions, holes, and inclined surfaces.

Testing Mar 16 – Apr 21

System Verification Apr 17

Optimization Apr 17 – Apr 24

Advisors: Dr. Shengmin Guo, Dr. Muhammad Wahab

