To Predict > To Design > To Perform

ME, ECE, IE Capstone Design Programs

Team 5: Automated Hydroponics Growing System Kevin Baudoin, Chase Brumfield, Sergio Enamorado, Andrew Fairchild, Josh Mobley, Adeolu Ogunniyi, and Ashton Proctor

Background

As the human population increases, there is a growing need for advancements in agricultural technology.

An adaptable, adjustable, and automated hydroponics system provides an environmentally-friendly solution with the potential for widespread distribution on a local scale.

Objective

To create an automated hydroponic system for leafy greens:

- Portable and scalable
- Capable of growing plants starting from seedlings.
- Uses less water than traditional agriculture
- Able to be monitored via online applications.

Engineering Specifications

	Considerations	Results
tal Energy Usage	Lighting, Pumps, Ventilation, Control	500 Watts
nt Yield Per rvest	Height/Width/Depth	200 Plants
Sensors	Water capacity and	Interaction
	Temp. Monitoring	time/Grow Cycle
2 Sensor	Monitoring and Delivery	400 -1200 PPM
Nutrient Delivery	Nutrient Delivery and Monitoring,	1200 – 1300
	Electrical Conductivity	us/cm
Control	pH Monitoring and Control	5.5-6.5
eight	Loaded	800lbs
Dimensions	Space Required	Height 80" Width 24"
		Length 57"
_]	Necessary DLI affected by CO2 supplementation	$13\frac{umol}{m^2} * day^{-1}$
September	October November	December
nceptualization Co	• Prototype Designs a	Began Ordering and Testing
• Pr	• Prototype Designs ototype Design Mr. Jack Rettig, E	

College of Engineering Department of **Mechanical & Industrial Engineering**

Testing and Validation **Power System:** Tested power output, consumption, and reliability Fuse during continuous use [24 hrs]. Panel ghts: • Tested the heat emitted by [•] lights (must be below 110 Frame degrees Celsius) Column **Plumbing and Nutrients: Controls:** •Flow rate testing utilizing stacked manifolds [4 gph] pH, EC, and CO2 levels Greaux Engineering System Data EC DATA PH DATA EC Status | LOW PH Status | IN RANGE EC Value (uS/cm) | 340.00 PH Value | 8.23 340 8.23 Racks: •Uniformly distributed load and deflection testing performed. and base. **CO2:** Calculated results of the DLI Level most efficient CO₂ and DLI combination. Safety

- CO₂ detection sensors with installed sound alarms
- Frame and racks have a load capacity factor of safety (FOS) > 1.5
- National Fire Protection Association electrical safety standards
- NEC (National Electrical Codes) standards for electrical protection.

Coding and testing done on

CO2 DATA

CO2 Status | IN RANGE

CO2 Value (ppm) | 626

CO2

626

7.5

9.0

3.30

Frame Structure and Materials: Compression testing done on the rectangular tubing, casters,

3.53 3.40 3.24 4.46 4.21 4.00 3.80 3.62 3.51 3.35

 4.40
 4.17
 3.97
 3.80
 3.63
 3.48
 3.37
 3.23

 4.31
 4.13
 3.94
 3.74
 3.60
 3.50
 3.37
 3.23

