To Predict > To Design > To Perform

ME, ECE, IE Capstone Design Programs

TEAM #4: 1940 PACKARD LIMO REBUILD

Kyle Banta, Grant Dietrich, Justin Royce, Jonathan Sherwood, Isaiah Simms, Masen Vaughan

BACKGROUND

- 1940 Packard-Henney Hearse
- Poor initial condition
- Tasked with rebuilding the chassis
 - Frame
 - Suspension
 - Drivetrain

SPECIFICATIONS

- Propulsion of chassis forward and backward.
- Fully functioning braking system.
- Adequate cooling provided for engine.
- Minimum payload capacity of 2400 lb.
- Ground clearance greater than 4 in.
- Comfort level greater than 1 hr.

MANUFACTURING

Sponsors: Kearney Lejeune, Owner, *Kel's Custom Classics, LLC*

OBJECTIVE

Provide fully functioning rolling chassis capable of forward and reverse motion under its own power with adequate braking system to fully stop the chassis.

TESTING		
Frame	Drivetrain	Tota
enetrating Dye Test aterial Test Carbon Steel σ _u =46 ksi σ _y =33 ksi atic Load Deflection Test	 Engine Testing Compression Test Air Intake Test Fuel Intake Test Spark Production Test Noise Production Test 	24%
Suspension	System	3%
atic Load Test /namic Load Test bration in Operation Test	 Forward Motion Reverse Motion Braking Ability Vibration Dissipation 	
Final Design Manufactur		anufacturing / Analysi
er Decemb	er January	Februar

Advisors: Warren Hull, Dr. Aly-Mousaad Aly

College of Engineering Department of Mechanical & Industrial Engineering

Kel's Custom Classics, LLC 12233 S Choctaw Dr. Baton Rouge, LA 70815

ANALYSIS

- Heat Dissipation of Cooling System
- Engine Mount Stress
- Transmission Brace Stress
- Driveshaft Angle, Twist, and Minimum Diameter
- Braking Distance
- Steering Shaft Torsion
- Front End Component Stresses
- Systems Comfort Analysis on Front Suspension
- Material & Structural Analysis of Frame Members

RESULTS

- Engine provides max 340 HP & 485 ft-lb max torque.
- Front & rear brakes installed and tested.
- Radiator provides 1.37 times necessary cooling.
- Design load equates to stress levels at 40% of yield.
- Final ground clearance 5.25 in.
- Average comfort level measured to be 8+ hrs.

BUDGET

tal Budget: \$10,000

Rear Leaf-Spring

Suspension

Drum Brakes

Transmission

Mount Support

Engine Mount

Support

CONCLUSION

The deliverable is a drivable chassis with functioning brakes and steering, adapted to accommodate modern drivetrain & suspension systems.

