To Predict > To Design > To Perform

ME, ECE, BE Capstone Design Programs

TEAM #3: INSTANT AIR George Emiko, Justin Fernandez, Kanza Siddiqui

Background

Entering a hot car poses a health threat to children, the elderly, and pets.

Objective: Design an easy to use and inexpensive system that provides cooling to the interior of an automobile prior to entry.

Potential Customers

- Elderly
- Parents
- Pet owners

Budget and Market Research

Total Budget: \$3000.00

Market Analys	Instant Ai		
Region of U.S with highest heat related child deaths	Southeast States: Louisiana, Texas, Georgia	Plot Area \$22.91	
Number of people who own cars in U.S	81.1%		
Dogs owned in the U.S as pets	36.5%	 Solenoid (2) Fan (2) 	
Cats owned in the U.S as pets	30.4%	 Arduino Kit IR Remote & Reciever (3-D Printing: (\$13/cubic Shipping Fee 	
Target Population	Millennial parents and pet owners ages 17- 35	On a typical day, how your car parked Answered: 11 0 to 2 hours 3 to 5 hours	
Median male income of target population	\$31,000	6 to 8 hours	
Median female income of target population	\$17,000	More than 8 hours 0% 10% 20% 30%	

September

October

Reasearch

Engineering Specifications

Total Cost: \$470.46

ir Budget Spring 2017

er (2) bic inch)

Instant Air view from outside vehicle

DC Brushless Fan

Cost of 1 unit Standard lead-acid car battery Max operation time Max box length

Max box height

January

November

Research

Redesigning

December

Begin Building/ Purchasing

College of Engineering Department of

RK Baker Group Sponsor: Ron Baker Faculty Advisors: Harris Wong

SolidWorks and Prototype Models **Functional Requirements** Circulation of air in and out of vehicle • Fast acting • Cools area to comfortable temperature Maintain Safety System must perform in a safe manner and prevent any The second form of harm • Cost Effective • System should be affordable to use, repair and maintain Automatic Operation **Testing and Validation** Instant Air on the Car Window • Fan • Performance test for temperature drop, power, and time Casing \bullet • Stress test • Impact test Effectiveness: Cools vehicle significantly (To -10 ⁰F) or Rubber Strip Maintain temperature from rising from set temperature **Engineering Specifications and Analysis** Efficiency Test: This test measured the temperature Specification Measurement change of different parts of the car when the system was Change in temperature 10°-20°F active in 2 minutes time interval: the results are shown **Max system temperature** 140°F below:

		Temp. vs Time/ With Instant Air						
	106							
	104	-			-			
	102							
-	100							
Temperature (F)	98							
Temper	96	-						
	94							
	92							
	90							
	88	T1= 0 mi	ns T2 = 2	mins	T3= 4 mins Tim	T4 = 6 mins ne (Minutes)	T5 = 8 mins	T6 = 10 mins
	-	Backseat	Steering Wh	eel —	- Dashboard	Front Passenger Seat	Driver Seat	Roof
			Ma	arch			April	
Begin Testing			Fina	l Adjusting				

Begin Manufacturing

February

< \$150

WH at 12V

8in

6 in

45-60 Minutes

45 AH and 480 -510

begin resting

Mechanical & Industrial Engineering