

# Replication-based Forming (Embossing) Fabrication/Manufacturing Methods Overview





DEN , 3/4/2018

## **Micro-Milling and Forming (Embossing) Process**



Daniel Park, Mike C. Murphy, Dimitris E. Nikitopoulos

College of Engineering Department of Mechanical & Industrial Engineering

## **Micro-Milling and Forming (Embossing) Process**



Daniel Park, Mike C. Murphy, Dimitris E. Nikitopoulos

College of Engineering Department of Mechanical & Industrial Engineering

## **Mold Insert Fabrication: LiGA Process (X-Ray)**

#### XRLM1 Beamline in CAMD – 1.3 GeV



**Mechanical & Industrial Engineering** 

Daniel Park, Mike C. Murphy, Dimitris E. Nikitopoulos

## Mold Insert Fabrication: LiGA Process (UV in SU-8)



## High-Resolution, Multi-Layer Mold Inserts

SU-8, multi-layer lithography process



Nickel molds in 13 layers have been made by electroforming with smallest features of 5-µm



Daniel Park, Dimitris E. Nikitopoulos

6

# Replication-based Forming (Embossing) Nano/Micro/Mezo-Fabrication Example Outcomes in Metals



### **Consortium for Innovation in Materials and Manufacturing**



### **CIMM: Multi-Scale Metal Forming**

Coatings and Interfaces Replication-Based Manufacturing





### **Thin-Film Coatings for Mold Inserts**





#### Ni micro-post mold insert



College of Engineering Department of Mechanical & Industrial Engineering

#### **Coating: Enabling Technology**



M<sup>2</sup>TF

#### Wenjin Meng's Group





Micro-hole array in Al



9

#### Solid/Solid Interfacial Mechanical Integrity



#### Metal Micro-Forming (Embossing)





#### **Micro-Scale Reverse Extrusion**





#### Nano-Scale Replication (Forming / Embossing)





DEN 13

# Replication-based Forming (Embossing) Nano/Micro/Mezo-Fabrication Example Outcomes in Polymers



## **Polymer Products for Applications**



Single-layer embossed products in PMMA and PC for BioTechnology applications (features down to 25 μm)

> Daniel Park, Mike C. Murphy, Dimitris E. Nikitopoulos

3D products in SU-8 by means of UV lithography for BioTechnology applications (features down to 75 μm)

Wanjun Wang's Group





### **Complex Embossed Assembled Products for Applications**



#### Double-Sided Embossing

- Large-Area, Embossing with Complex Features
- 3D Bonded Micro-Chip Assemblies
- Integrated Alignment
  Features



#### **Polymer MicroFabrication/Fluidics**



#### College of Engineering Department of Mechanical & Industrial Engineering

#### D. Park, M. C. Murphy, D. E. Nikitopoulos

## High-Resolution, Multi-Layer PMMA Embossed Product





13-Ni-layer mold insert with 5  $\mu$ m features

5-μm features on plane, 5-μm depth resolution (13 layers) PMMA embossed and covered micro-chip







Daniel Park, Dimitris E. Nikitopoulos



#### **Rock-Based Micro-models: Particle Flow Experiments**



п

#### J.Upadhyay<sup>1</sup>, D. S. Park<sup>1</sup>, K. E. Thompson<sup>2</sup>, and D. E. Nikitopoulos<sup>1</sup>

<sup>1</sup>Mechanical & Industrial Engineering Department, <sup>2</sup>Craft & Hawkins Petroleum Engineering Department, LSU, Baton Rouge, LA 70803





#### **Forming in Plastics Application**

### **Embossed Porous Media** Micro-Model **Experiments**





& Industrial Engineering

### **3D Nano-Scale Replication (Forming / Embossing)**

Two-level 3D Nano-molding



Original Primary Stamp (Left) and Nano-Patterned PMMA Surface (Right)



Size of the Replicated Nano-Scale Features via AFM



College of<br/>EngineeringNano-PaDepartment of<br/>Mechanical & Industrial Engineering

a spin b spin gpin d

**Final Nano-Patterned Microchannels** 

3 um

5 um

10 um

Various Replicated 3D Nano-Patterned Surfaces Replication-based Superhydrophobic Surface Fabrication Through Soft UV-Nanoimprint Lithography and Silane Deposition





PDMS stan





**Original Elephant-Ear Leaf Pattern** 

500 um





3D Elephant-Ear Leaf Surface Structure on Microchannel Walls





DEN **19** 3/4/2018

Sunggook Park's Group

Structure on Microc

# Replication-based Forming (Embossing) Micro/Mezo-Fabrication Example Outcomes in Ceramics



## **Ceramic Synthesis and Forming Process**



DEN 21 3/4/2018

### **Multi-Layer Embossed Ceramic Product**





#### Daniel Park, Ingmar Schoegl, Dimitris E. Nikitopoulos

DEN 22